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Quadrupolar order in the S = 2 Heisenberg ferromagnet
with the single-ion cubic anisotropy?
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Abstract. The ground state properties of S = 2 ferromagnets with isotropic Heisenberg exchange (J) and
single-ion cubic anisotropy (D) are studied. The perturbation theory for J/D � 1 is used to find an
effective Hamiltonian up to the fourth order for 1, 2 and 3 dimensions. It is shown that in opposition to
the MFA prediction there is the quadrupolar long range order at T = 0 in the non-magnetic state of the
system without a quadrupolar type of interaction. The effect is a consequence of the quantum nature of
the model.

PACS. 75.10.Dg Crystal-field theory and spin Hamiltonians – 75.10.Jm Quantized spin models – 75.30.Gw
Magnetic anisotropy

1 Introduction

In many real magnetic materials the magnetic ordering
produced by an isotropic short-range exchange is affected
by the crystal field of lower symmetry. For a lattice of cu-
bic symmetry the lowest-term which describes the crystal
field anisotropy can be written in the form

Hc = −D
∑
i,α

(Sαi )4, α = x, y, z (1)

where S ≥ 2 (S = 2 is the lowest value for which this
term is non-trivial). The effect of a cubic anisotropy on
the critical behavior has been studied since 1973 [1] to
this day [2]. Much less attention has been devoted to the
problem of the low temperature phase and ground state
properties of the cubic quantum spin systems.

In a system with higher value of spin S ≥ 1 in addi-
tion to the magnetic (dipolar) long range order one can
observe also multipolar order e.g. quadrupolar one. It is
obvious that a magnetic ground state will always have
quadrupolar moment while for a non-magnetic (paramag-
netic) state this may be not true. Of course one can expect
the existence of quadrupolar ordering even without dipo-
lar one if there is a quadrupolar type of interaction in
the system under consideration (there are several mech-
anisms which give rise to the higher degree - multipolar
pair interactions connected not only with electric multi-
pole interactions but also with phonon coupling or multi-
electron exchange). The question is if there is a possibility
to observe the multipolar ordering in paramagnetic phase
of the system with only magnetic interaction between ions
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and single-ion anisotropy. It is clear that such a possibility
does not exist for the classical spin systems. However, the
quantum character of the spin can lead to qualitatively
different physical properties.

In the present paper we show that as a consequence
of the quantum character of spins the quadrupolar long
range order can be observed in the paramagnetic ground
state of the S = 2 system without a quadrupolar type of
interaction. Taking into account the ground state prop-
erties the quantum nature of the systems with higher
spin values can be more important than the quantum na-
ture of the systems with so-called the most quantum spin
S = 1/2 [3].

We consider the cubic model described by the Hamil-
tonian

H = −J
∑
(ij)

(SiSj)−D
∑
i

[(Sxi )4 + (Syi )4 + (Szi )4], (2)

where spin operators for S = 2 are denoted by Sαi . We
consider the d-dimensional hypercubic lattice, later on we
discuss the case of a linear chain (d = 1), square lattice
(d = 2) and a simple cubic lattice (d = 3). The first term
of the Hamiltonian (2), with the coupling constant J > 0,
is the usual isotropic (ferromagnetic) exchange between
nearest neighbors. The second term, the crystal field in-
teraction, describes the influence of neighboring ions onto
the magnetic ion carrying the magnetic moment. In terms
of the effective spin model this is a single-site interaction.
We consider the crystal-field anisotropy of cubic symme-
try, and the main aim of our work is to investigate what
happens with the long-range order (LRO) at T = 0 when
this anisotropy is present.
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Fig. 1. Spontaneous magnetization m = 〈Sz〉 versus the re-
duced crystal field parameter D/(zJ) at T = 0 (MFA approx-
imation).

2 Preliminary considerations and MFA
solution

To start with, we take one spin with the crystal field in-
teraction

h = −D[(Sx)4 + (Sy)4 + (Sz)4] (3)

and diagonalize the Hamiltonian h. The five states of the
S = 2 spin are split into a doublet and a triplet. The
energies are

e1 = e2 = −24D,

e3 = e4 = e5 = −18D, (4)

and the eigenstates of h are the following

|ψ1〉 =
1
√

2
(|2〉+ |−2〉),

|ψ2〉 = |0〉,

|ψ3〉 = |1〉,

|ψ4〉 =
1
√

2
(|2〉− |−2〉),

|ψ5〉 = − |−1〉, (5)

where by |2〉, |1〉, . . . , |−2〉 we denoted eigenstates of Sz.
The doublet {| ψ1〉, | ψ2〉} has a property which is very
important for our considerations. Within this doublet, ev-
ery matrix element of a spin operator Sα (α = x, y, z)
vanishes:

〈ψi | S
α | ψj〉 = 0, (6)

for each i = 1, 2 and j = 1, 2. One can say this doublet
is nonmagnetic. If the wave function of the whole sys-
tem contained only products of |ψ1〉 and |ψ2〉 the system
would never have a nonzero magnetization. In this paper
we consider the case of D ≥ 0 in (2), it means that the
nonmagnetic states |ψ1〉 and |ψ2〉 are favored. For D = 0
we have the classical ground state and saturated magne-
tization. One may expect that the magnetization should
decrease or even disappear when D increases.

The model (2) was investigated with the use of the
mean-field approximation (MFA) by many authors [4–7].
These authors considered also phase transitions at finite
temperature, whereas we concentrate on the LRO in the
ground state. It was found by the MFA that the crystal
field anisotropy in the model (2) defines easy axes of mag-
netic ordering; for D > 0 there may occur spontaneous or-
dering along the direction [100] or other equivalent direc-
tions. Within the MFA one obtains that the spontaneous
magnetization disappears continuously for D/(zJ) = 4/3,
where z denotes the number of nearest neighbors. The
dependence of the spontaneous magnetization on the pa-
rameter D is shown in the Figure 1. The MFA always
overestimates the tendency towards ordering because it
neglects the disordering effect of fluctuations. Therefore,
we believe that, indeed, the magnetic order vanishes at
some Dc depending on the lattice.

The authors did not discuss the nature of the phase
with no spontaneous magnetization. However, it is easy
to see that in the mean-field approximation this phase is
found to be disordered. Assuming there is no magnetic
order we get the MFA Hamiltonian in the form

HMFA = −D[(Sx)4 + (Sy)4 + (Sz)4],

the exchange term of (2) is completely neglected in this
approximation and the spins do not interact with one an-
other. Thus, the MFA leaves a huge degeneracy in the
ground state of the phase with no magnetic order. In this
approximation each product of the states |ψ1〉 and | ψ2〉
is a ground state of the system and the total degeneracy
is 2N . In the next section we consider an effective Hamil-
tonian acting in this subspace of states.

As mentioned in the Introduction if there is no mag-
netic order in the system, it does not necessarily imply
that the system is disordered, there may exist a multipolar
order described by a correlation function containing the
second or higher powers of spin operators. The quadrupo-
lar order could not be obtained by the MFA because of
the very nature of this method. It is easy to understand
that only magnetization can act as a mean field when the
exchange interactions contain only first powers of spin op-
erators, as it is in the Hamiltonian (2).

3 Perturbation theory for J/D� 1

We apply the perturbation theory for J/D � 1, treating
the crystal field interaction as a main term

H0 = −D
∑
i

[(Sxi )4 + (Syi )4 + (Szi )4],

and the exchange term as a perturbation

V = −J
∑
(ij)

(SiSj).

Since the Hamiltonian H0 consists of single-site terms, it
can be easily diagonalized. For D > 0 we can have either
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the state |ψ1〉 or |ψ2〉 on each site in the ground state of
H0, and the degeneracy is 2N . This is exactly the subspace
of states which was obtained by the MFA in the phase with
no spontaneous magnetization. We are going to find some
effective interaction which could lift this degeneracy.

We follow the approach used in the investigation of the
Hubbard model in the limit of strong Coulomb repulsion
[8–11]. We base our calculations on the work of Takahashi
[11], here we only sketch the method referring the reader
to [11] for details.

We denote the subspace of the ground states of H0 by
U0, the operator of projection onto U0 is called P0 and E0

is the unperturbed energy of the ground states belonging
to U0. The subspace of perturbed states (after the addition
of V ) is denoted by U and the projector onto it by P . The
series expansion for P was derived by Kato [12]. Takahashi
used this expansion to construct the operator Γ which
maps states from U0 to U . The operator Γ , such that
Γ †Γ = 1, enables to reduce the eigenvalue problem for
H to the subspace U0. For the Hamiltonian H and the
physical quantity A we find the mappings

Heff = Γ †HΓ, (7)

a = Γ †AΓ. (8)

Working with Heff and a in U0 is equivalent to considering
H and A in U . In order to calculate the average of an
operatorA in the ground state of H one must first perform
the above mapping, then find the ground state of Heff and
compute the average of a.

The operator P0 projects onto the subspace of prod-
ucts of the nonmagnetic states | ψ1〉 and |ψ2〉. From the
property (6) of these states it follows that P0V P0 = 0. In
such a case, we obtain from (7) and perturbational expan-
sion of [11] the effective Hamiltonian in the form

Heff = H
(2)
eff +H

(3)
eff +H

(4)
eff + · · · , (9)

where

H
(2)
eff = P0V RV P0,

H
(3)
eff = P0V RV RV P0,

H
(4)
eff = P0V RV RV RV P0

−
1

2
(P0V R

2V P0V RV P0 + h.c.),

and

R =
1− P0

E0 −H0
·

In the above expansion we omitted the zeroth-order term
P0H0P0, which is a constant and only shifts the energy
scale. The property (6) makes the first order of the expan-
sion vanish. Since there are two possible states per site in
U0, the effective Hamiltonian Heff will have a form of a
spin S = 1/2 Hamiltonian. We will write it down in terms
of Pauli matrices {σx, σy, σz} with the identification

|ψ1〉 → |+〉,

|ψ2〉 → |−〉,

r r

r r

r r r r

r r r r r

r r r r

(a) (b)

(c) (d)

(e)

(f)

Fig. 2. Diagrams appearing in the perturbational calculation
of the effective Hamiltonian: second order diagram (a), third
order (b), fourth order (c), (d), (e) and (f).

where | +〉 and | −〉 stand for the states of the effective
“spin” S = 1/2 (quotation marks remind that this two-
state object is not a real spin; operators σα are, in fact,
operators of the quadrupolar moment).

The calculation of Heff in the second order (the low-
est nonvanishing order) is quite simple, there is only one
diagram, which is shown in Figure 2a. The effective Hamil-
tonian have the same form in d = 1, 2 and 3

H
(2)
eff = −

J2

2D

∑
(ij)

(σxi σ
x
j + σzi σ

z
j ), (10)

the summation goes over pairs of nearest neighbors. Thus,
we have obtained an effective interaction between the non-
magnetic states. This is a hint that the MFA prediction
about the disordered state for big D may be not correct.

The model described by H
(2)
eff , the XY -type planar model,

is known to exhibit the long-range order in d = 2 and 3
[13], and to be critical in d = 1.

The Hamiltonian H
(2)
eff has a continuous rotational

symmetry in its XZ plane, whereas the original model
possesses a discrete cubic symmetry. This difference may
only be a result of the approximation; obviously the value
of J/D does not change the symmetry. We should find the
symmetry breaking terms in higher orders of Heff .

We do not find them in the third order contribution to
Heff , which is obtained from the diagram (b) of Figure 2:

H
(3)
eff =

J3

12D2

∑
(ij)

(σxi σ
x
j + σzi σ

z
j )

−
J3

8D2

∑
(ij)

(σyi σ
y
j ). (11)

Although the new coupling between components σy ap-
peared, the Hamiltonian still has the rotational symmetry
in the plane XZ.
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Fig. 3. Types of interactions obtained in the fourth order of
the expansion for the effective Hamiltonian. A piece of a square
lattice is shown, interactions I(n) are between “spins” denoted
by bold points. Interactions I(1), I(3) and I(5) are present only
in d = 2 and 3.

The desired terms are found in the fourth order of the
expansion for Heff . The diagrams (c), (d) and (e) from
Figure 2 need to be considered, the unlinked diagram (f)
does not give any contribution. The variety of new inter-
actions appearing in the fourth order is shown in Figure 3.
The interactions I(3) and I(4) are crucial for our consid-
erations, because they reduce the symmetry of Heff from
the full rotational symmetry in the XZ plane to the sym-
metry of discrete rotations through the angle ±(2π)/3. All
other interactions present, including the four-“spin” term
I(5) have the continuous symmetry in the XZ plane.

We introduce the notation I
(n)
chain, I

(n)
square, I

(n)
cubic for

the sums of all the terms I(n) on a chain, square lattice
and a cubic lattice, respectively. Now we also use such
abbreviations for the sums of nearest-neighbors couplings:
the first sum in (11) will be called I(0)xz and for the second
sum of (11) the name I(0)y will be used; subscripts will

indicate a type of the lattice. Using this notation we write
the fourth order contribution to Heff on the chain in the
form

H
(4)
eff (chain) = −

J4

72D3
I

(0)xz
chain −

J4

32D3
I

(0)y
chain

−
J4

18D3
I

(2)
chain −

J4

24D3
I

(4)
chain. (12)

In the case of the square lattice we have

H
(4)
eff (square) = −

53J4

72D3
I(0)xz
square −

J4

32D3
I(0)y
square

−
7J4

18D3
I(1)
square −

J4

18D3
I(2)
square

−
13J4

72D3
I(3)
square −

J4

24D3
I(4)
square

−
5J4

24D3
I(5)
square, (13)

and in the case of the simple cubic lattice we get

H
(4)
eff (cubic) = −

35J4

24D3
I

(0)xz
cubic −

J4

32D3
I

(0)y
cubic

−
7J4

18D3
I

(1)
cubic −

J4

18D3
I

(2)
cubic

−
13J4

72D3
I

(3)
cubic −

J4

24D3
I

(4)
cubic

−
5J4

24D3
I

(5)
cubic. (14)

In order to understand the role of the symmetry break-
ing terms I(3) and I(4) we apply a simple approximation.
The main part of Heff is the rotationally invariant XY -

type Hamiltonian H
(2)
eff . It is known to have a spontaneous

magnetization in its XZ plane, in d = 2 and 3. We take

a classical approximation for the ground state of H
(2)
eff in

d = 2 and 3. For one “spin” we define the state

|φ〉 = C(φ)[(1 + sinφ) |+〉+ cosφ |−〉], (15)

where C(φ) is a normalization factor such that 〈φ |φ〉 = 1.
This state satisfies the equation

(σx cosφ+ σz sinφ) |φ〉 = 1 |φ〉.

The function |φ〉 describes the “spin” lying in the XZ
plane along the direction given by the angle φ, which is
measured with respect to the axis X. This function has
the following properties

〈φ | σx | φ〉 = cosφ,

〈φ | σy | φ〉 = 0,

〈φ | σz | φ〉 = sinφ.

Our approximation for the ground state of H
(2)
eff in d = 2

and 3 is

|Φ〉 =
N∏
i=1

|φi〉, (16)
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where the product is taken over all lattice sites. Now we
treat |Φ〉 as a trial wave function and compute

Eφ = 〈Φ |Heff |Φ〉

to check which directions of ordering are preferred by the
symmetry breaking terms I(3) and I(4). In the case of the
square lattice we obtain

E
(d=2)
φ /N =

29

36

J4

D3
sin(3φ) + const .,

and for the cubic lattice

E
(d=3)
φ /N =

55

24

J4

D3
sin(3φ) + const .

Finding the minima in the above functions, we conclude
that the Heff with the fourth order symmetry breaking
terms possesses three equivalent directions of magnetic
ordering: φ = π/2, (7/6)π, −(π/6). The function |Φ〉 for
these values of φ will be our approximation for the ground
state of Heff in d = 2 and 3.

In the case of the chain the main term of the effec-
tive Hamiltonian has no long-range order. However, the

model described by H
(2)
eff is critical, and the small symme-

try breaking perturbations from H
(4)
eff are added to it. We

expect, that these perturbations will stabilize the mag-
netic LRO in the effective S = 1/2 model in d = 1, al-
though in this case our argument is weaker than for d = 2
and 3.

After establishing the ground-state properties of Heff

we must find the relation between the original S = 2 spin
operators Sαi and the operators σαi of the effective S =
1/2 model. This is done according to the relation (8). We
consider the following operators

Sαi , (Sαi )2 − 2, Sαi S
β
i + Sβi S

α
i (17)

where α, β = x, y, z and α 6= β. The perturbational calcu-
lation of the mapping (8) in a given order of expansion is
more tedious than the calculation of Heff in the same or-
der. The effective Hamiltonian was found up to the fourth
order because the crucial symmetry breaking terms ap-
peared only in the fourth order. We have made a rather
crude approximation for finding the ground state of Heff ,
therefore we will be satisfied with lower orders of expan-
sion in the calculation of mappings of the operators (17).
Up to the third order we find

Γ †Sαi Γ = 0,

Γ †(Sαi S
β
i + Sβi S

α
i )Γ = 0.

In this order of the perturbation theory there is no pos-
sibility of obtaining a magnetic order in our model (2), it
agrees with the MFA result.

-
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Fig. 4. Correspondence between quadrupolar operators
[(Sαi )2 − 2] and directions in the plane XZ of the effective
model.

Nonvanishing expressions are obtained for the map-
pings of operators [(Sαi )2 − 2]

Γ †[(Sxi )2 − 2]Γ =
√

3σxi − σ
z
i +O

(
J2

D2

)
,

Γ †[(Syi )2 − 2]Γ = −
√

3σxi − σ
z
i +O

(
J2

D2

)
,

Γ †[(Szi )2 − 2]Γ = 2σzi +O

(
J2

D2

)
· (18)

One can see that magnetic order in the effective model
with S = 1/2 implies quadrupolar order in the initial
model (2). The three operators [(Sαi )2 − 2] correspond to
three directions in the XZ plane of the effective model.
According to (18), the operator [(Szi )2 − 2] is represented
by the operator 2σzi , which projects the effective “spin” on
the direction (0, 1) in the XZ plane. In the same way the
operators [(Sxi )2−2] and [(Syi )2−2] correspond to the pro-

jections of the effective “spin” on the directions (
√

3,−1)
and (−

√
3,−1), respectively (see Fig. 4). These three di-

rections coincide with the previously found directions of
spontaneous ordering of the effective model.

Now, in the case of d = 2 and d = 3, we can use
the approximate wave function |Φ〉 of the effective model
to calculate the ground-state averages of the operators
[(Sαi )2−2]. The zeroth order approximations of 〈(Sαi )2−2〉,

obtained according to (18), will be denoted by q
(0)
α . For

the three possible directions φ of ordering in the S = 1/2

model we have three sets of q
(0)
α

{q(0)
x , q(0)

y , q(0)
z } = {2,−1,−1} for φ = −

π

6
,

{q(0)
x , q(0)

y , q(0)
z } = {−1, 2,−1} for φ =

7

6
π,

{q(0)
x , q(0)

y , q(0)
z } = {−1,−1, 2} for φ =

π

2
. (19)

In classical terms, one can say that the obtained
quadrupols are of prolate shape, they are stretched along
a chosen axis.
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Fig. 5. Second-order averages q
(2)
x (solid line), q

(2)
y (dashed

line) and q
(2)
z (dashed-dotted line) versus the angle φ. The

values (J/D) = 1 and z = 6 were chosen to make the
second-order corrections visible. Vertical dotted lines show
directions of ordering in the effective model (angle φ =
(π/2), (7/6)π, (11/6)π).

The second order corrections to (18) are a bit more
complicated: in this order the representation of [(Sαi )2−2]
involves not only operators σαi but also operators from
neighboring sites. For [(Szi )2 − 2] up to the second order
we get

Γ †[(Szi )2 − 2]Γ = 2σzi

+

(
J

D

)2
− z

12
σzi −

1

24
σxi
∑
j

σxj +
1

24
σzi
∑
j

σzj

 (20)

where the sums are over nearest neighbors of the site i.
More lengthy formulas are obtained for [(Sxi )2 − 2] and
[(Syi )2−2], one can calculate these expressions by applying
rotations through the angle ±(2π)/3 to (20).

The second-order corrections essentially do not change
the picture obtained from (18). Applying the wave func-
tion |Φ〉 with three possible values of φ we obtain three sets

of q
(2)
α (second-order averages of [(Sαi )2−2]). For φ = (π/2)

we get

q(2)
z = 2−

z

24

(
J

D

)2

,

q(2)
x = q(2)

y = −1 +
z

48

(
J

D

)2

,

and identical relations, but with x,y and z interchanged,
hold for φ = −(π/6) and φ = (7/6)π. The second-order
corrections reduce the averages of quadrupolar operators
[(Sαi )2−2] from the saturation values, as it should be, since
the two terms in (2) do not commute. The dependence of

q
(2)
α on the angle φ is plotted in Figure 5. To conclude,

it follows from the properties of the effective Hamiltonian
Heff , which has three directions of magnetic ordering, that
the initial model (2) possesses the quadrupolar order in
the case of J/D � 1. The above conclusion was reached
with the help of the approximation for the ground state
of Heff , which is justified for d = 2 and 3.

As far as the chain is concerned, if we assume that

the symmetry breaking perturbations from H
(4)
eff stabilize

the magnetic LRO in the effective model, then we have
quadrupolar order in the initial model (2). If this is the
case, the quadrupolar order should disappear asymptoti-
cally with (D/J)→∞, because then the symmetry break-

ing term H
(4)
eff becomes smaller in comparison to the main

term of the effective Hamiltonian (H
(2)
eff ), and the critical

XY -type model is approached.

4 Conclusions
The perturbation theory has been used to study the
ground state properties of the S = 2 ferromagnets with
cubic single-ion anisotropy in 1, 2 and 3 dimensions. The
outcome of the paper is that in opposition to the MFA
prediction the quadrupolar order can exist at T = 0 in
the non-magnetic state of the system without quadrupo-
lar interactions. This is a pure quantum effect which could
not be observed in the case of classical spins. The result
contradicts the common notion that the MFA predictions
should be qualitatively correct in 3 dimensions.

The calculations presented in this paper allow us to
assume that the quadrupolar order should exist, in the
model under consideration, not only at the ground state
but also at finite temperature, at least for d = 3. It follows
from the fact, that, at the second order of approximation,
our system is described by the effective Hamiltonian of the
XY type, which for d = 3 exhibits the long range order
also at finite temperature.

As mentioned in the previous section for d = 1 at
T = 0 the existence of a long range order could be caused
by the higher order corrections breaking the continuous
symmetry of the effective Hamiltonian. When D/J goes
to infinity one can expect a decrease of the quadrupolar
order and an increase of the correlation length as a critical
state is approached.

It is our pleasure to thank Gábor Fáth for interesting discus-
sions. M.D. would also like to thank Romek Lemański for shar-
ing his experience in perturbational calculations.
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